1. |
Boswellic Acid Synergizes With Low-Level Ionizing Radiation to Modulate Bisphenol Induced-Lung Toxicity in Rats by Inhibiting JNK/ERK/c-Fos Pathway.
Mansour SZ, Moawed FSM, Badawy MMM, Mohamed HE
Bisphenol A (BPA) is a low molecular weight chemical compound that has a deleterious effect on the endocrine system. It was used in plastics manufacturing with injurious effects on different body systems. Occupational exposure to low-level ionizing radiation (<1 Gy) is shown to attenuate an established inflammatory process and therefore enhance cell protection. Therefore, the objective of this study was to investigate the protective effect of boswellic acid (BA) accompanied by whole-body low-dose gamma radiation (γ-R) against BPA-induced lung toxicity in male albino rats. BPA intoxication induced with 500 mg/kg BW. Rats received 50 mg BA/kg BW by gastric gavage concomitant with 0.5 Gy γ-R over 4 weeks. The immunoblotting and biochemical results revealed that BA and/or γ-R inhibited BPA-induced lung toxicity by reducing oxidative damage biomolecules; (MDA and NADPH oxidase gene expression), inflammatory indices (MPO, TNF-α, IL-6, and gene expression of CXCR-4). Moreover, BA and or/γ-R ameliorated the lung inflammation regulation of the JNK/ERK/c-Fos and Nrf2/ HO-1 signaling pathways. Interestingly, our data demonstrated that BA in synergistic interaction with γ-R is efficacious control against BPA-induced lung injury anti-oxidant mediated anti-inflammatory activities.
Dose Response. 2020 Oct-Dec;18(4):1559325820969597.
PMID: 33192203 [PubMed - as supplied by publisher]
|
2. |
The Anti-inflammatory Potential of Selected Plant-derived Compounds in Respiratory Diseases.
Wieczfinska J, Sitarek P, Kowalczyk T, Skała E, Pawliczak R
Inflammation plays a major role in chronic airway diseases like asthma, COPD, and cystic fibrosis. Inflammation plays a crucial role in the worsening of the lung function resulting in worsening symptoms. The inflammatory process is very complexed, therefore the strategies for developing an effective treatment for inflammatory airway diseases would benefit from the use of natural substances. Plant products have demonstrated anti-inflammatory properties on various lung disease models and numerous natural plant agents have successfully been used to treat inflammation. Naturally occurring substances may exert some anti-inflammatory effects by modulating some of the inflammatory pathways. These agents have been used in different cultures for thousands of years and have proven to be relatively safe. Parthenolide, apocynin, proanthocyanidins, and boswellic acid present different mechanisms of actions - among others, through NF-kB or NADPH oxidase inhibition, therefore showing a wide range of applications in various inflammatory diseases. Moreover, some of them have also antioxidant properties. This review provides an overview of the anti-inflammatory effects of some of the natural agents and illustrates their great potential as sources of drugs to cover an extensive range of pharmacological effects.
Curr Pharm Des. 2020;26(24):2876-2884.
PMID: 32250214 [PubMed - indexed for MEDLINE]
|
3. |
Effect of salai guggal ex-Boswellia serrata on cellular and humoral immune responses and leucocyte migration.
Sharma ML, Khajuria A, Kaul A, Singh S, Singh GB, Atal CK
Effect of alcoholic extract of salai guggal (AESG) was studied on cellular and humoral immune responses in mice and leucocyte migration in rats. Oral administration of AESG strongly inhibited the antibody production and cellular responses to sheep red blood cells in mice. It inhibited the infiltration of polymorphonuclear leucocytes and reduced the volume of pleural exudate in carrageenan induced pleurisy in rats. It showed no cytotoxic effect.
Agents Actions. 1988 Jun;24(1-2):161-4.
PMID: 3407547 [PubMed - indexed for MEDLINE]
|